Последние статьи
Домой / Жкх / Решение системы линейных алгебраических уравнений матричным методом. Матричный метод решения системы линейных алгебраических уравнений

Решение системы линейных алгебраических уравнений матричным методом. Матричный метод решения системы линейных алгебраических уравнений

(иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ . Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:

  1. Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
  2. Найти обратную матрицу $A^{-1}$.
  3. Используя равенство $X=A^{-1}\cdot B$ получить решение заданной СЛАУ.

Любую СЛАУ можно записать в матричной форме как $A\cdot X=B$, где $A$ - матрица системы, $B$ - матрица свободных членов, $X$ - матрица неизвестных. Пусть матрица $A^{-1}$ существует. Умножим обе части равенства $A\cdot X=B$ на матрицу $A^{-1}$ слева:

$$A^{-1}\cdot A\cdot X=A^{-1}\cdot B.$$

Так как $A^{-1}\cdot A=E$ ($E$ - единичная матрица), то записанное выше равенство станет таким:

$$E\cdot X=A^{-1}\cdot B.$$

Так как $E\cdot X=X$, то:

$$X=A^{-1}\cdot B.$$

Пример №1

Решить СЛАУ $ \left \{ \begin{aligned} & -5x_1+7x_2=29;\\ & 9x_1+8x_2=-11. \end{aligned} \right.$ с помощью обратной матрицы.

$$ A=\left(\begin{array} {cc} -5 & 7\\ 9 & 8 \end{array}\right);\; B=\left(\begin{array} {c} 29\\ -11 \end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \end{array}\right). $$

Найдём обратную матрицу к матрице системы, т.е. вычислим $A^{-1}$. В примере №2

$$ A^{-1}=-\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$. Затем выполним умножение матриц

$$ \left(\begin{array} {c} x_1\\ x_2 \end{array}\right)= -\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right)\cdot \left(\begin{array} {c} 29\\ -11 \end{array}\right)=\\ =-\frac{1}{103}\cdot \left(\begin{array} {c} 8\cdot 29+(-7)\cdot (-11)\\ -9\cdot 29+(-5)\cdot (-11) \end{array}\right)= -\frac{1}{103}\cdot \left(\begin{array} {c} 309\\ -206 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right). $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right)$. Из этого равенства имеем: $x_1=-3$, $x_2=2$.

Ответ : $x_1=-3$, $x_2=2$.

Пример №2

Решить СЛАУ $ \left\{\begin{aligned} & x_1+7x_2+3x_3=-1;\\ & -4x_1+9x_2+4x_3=0;\\ & 3x_2+2x_3=6. \end{aligned}\right.$ методом обратной матрицы.

Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.

$$ A=\left(\begin{array} {ccc} 1 & 7 & 3\\ -4 & 9 & 4 \\0 & 3 & 2\end{array}\right);\; B=\left(\begin{array} {c} -1\\0\\6\end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right). $$

Теперь настал черёд найти обратную матрицу к матрице системы, т.е. найти $A^{-1}$. В примере №3 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^{-1}$:

$$ A^{-1}=\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$, после чего выполним умножение матриц в правой части данного равенства.

$$ \left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)= \frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)\cdot \left(\begin{array} {c} -1\\0\\6\end{array}\right)=\\ =\frac{1}{26}\cdot \left(\begin{array} {c} 6\cdot(-1)+(-5)\cdot 0+1\cdot 6 \\ 8\cdot (-1)+2\cdot 0+(-16)\cdot 6 \\ -12\cdot (-1)+(-3)\cdot 0+37\cdot 6 \end{array}\right)=\frac{1}{26}\cdot \left(\begin{array} {c} 0\\-104\\234\end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right) $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right)$. Из этого равенства имеем: $x_1=0$, $x_2=-4$, $x_3=9$.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.

Назначение сервиса . С помощью данного онлайн-калькулятора вычисляются неизвестные {x 1 , x 2 , ..., x n } в системе уравнений. Решение осуществляется методом обратной матрицы . При этом:
  • вычисляется определитель матрицы A ;
  • через алгебраические дополнения находится обратная матрица A -1 ;
  • осуществляется создание шаблона решения в Excel ;
Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word (см. пример оформления).

Инструкция . Для получения решения методом обратной матрицы необходимо задать размерность матрицы. Далее в новом диалоговом окне заполнить матрицу A и вектор результатов B .

Количество переменных 2 3 4 5 6 7 8 9 10
См. также Решение матричных уравнений .

Алгоритм решения

  1. Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
  2. При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
  3. Вектор решения X ={x 1 , x 2 , ..., x n } получается умножением обратной матрицы на вектор результата B .
Пример . Найти решение системы матричным методом. Запишем матрицу в виде:
Алгебраические дополнения.
A 1,1 = (-1) 1+1
1 2
0 -2
∆ 1,1 = (1 (-2)-0 2) = -2

A 1,2 = (-1) 1+2
3 2
1 -2
∆ 1,2 = -(3 (-2)-1 2) = 8

A 1,3 = (-1) 1+3
3 1
1 0
∆ 1,3 = (3 0-1 1) = -1

A 2,1 = (-1) 2+1
-2 1
0 -2
∆ 2,1 = -(-2 (-2)-0 1) = -4

A 2,2 = (-1) 2+2
2 1
1 -2
∆ 2,2 = (2 (-2)-1 1) = -5

A 2,3 = (-1) 2+3
2 -2
1 0
∆ 2,3 = -(2 0-1 (-2)) = -2

A 3,1 = (-1) 3+1
-2 1
1 2
∆ 3,1 = (-2 2-1 1) = -5

·
3
-2
-1

X T = (1,0,1)
x 1 = -21 / -21 = 1
x 2 = 0 / -21 = 0
x 3 = -21 / -21 = 1
Проверка:
2 1+3 0+1 1 = 3
-2 1+1 0+0 1 = -2
1 1+2 0+-2 1 = -1

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

Основные понятия.

Определение 1 . Системой m линейных уравнений с n неизвестными называется система вида:

где и - числа.

Определение 2 . Решением системы (I) называется такой набор неизвестных , при котором каждое уравнение этой системы обращается в тождество.

Определение 3 . Система (I) называется совместной , если она имеет хотя бы одно решение и несовместной , если она не имеет решений. Совместная система называется определенной , если она имеет единственное решение, и неопределенной в противном случае.

Определение 4 . Уравнение вида

называется нулевым , а уравнение вида

называется несовместным . Очевидно, что система уравнений, содержащая несовместное уравнение, является несовместной.

Определение 5 . Две системы линейных уравнений называются равносильными , если каждое решение одной системы служит решением другой и, наоборот, всякое решение второй системы является решением первой.

Матричная запись системы линейных уравнений.

Рассмотрим систему (I) (см. §1).

Обозначим:

Матрица коэффициентов при неизвестных

Матрица – столбец свободных членов

Матрица – столбец неизвестных

.

Определение 1. Матрица называется основной матрицей системы (I), а матрица - расширенной матрицей системы (I).

По определению равенства матриц системе (I) соответствует матричное равенство:

.

Правую часть этого равенства по определению произведения матриц (см. определение 3 § 5 главы 1 ) можно разложить на множители:

, т.е.

Равенство (2) называется матричной записью системы (I) .

Решение системы линейных уравнений методом Крамера.

Пусть в системе (I) (см. §1) m=n , т.е. число уравнений равно числу неизвестных, и основная матрица системы невырожденная, т.е. . Тогда система (I) из §1 имеет единственное решение

где Δ = det A называется главным определителем системы (I), Δ i получается из определителя Δ заменой i -го столбца на столбец из свободных членов системы (I).

Пример.Решить систему методом Крамера:

.

По формулам (3) .

Вычисляем определители системы:

,

,

.

Чтобы получить определитель , мы заменили в определителе первый столбец на столбец из свободных членов; заменяя в определителе 2-ой столбец на столбец из свободных членов, получаем ; аналогичным образом, заменяя в определителе 3-ий столбец на столбец из свободных членов, получаем . Решение системы:

Решение систем линейных уравнений с помощью обратной матрицы.

Пусть в системе(I) (см. §1) m=n и основная матрица системы невырожденная . Запишем систему (I) в матричном виде (см. §2 ):

т.к. матрица A невырожденная, то она имеет обратную матрицу (см. теорему 1 §6 главы 1 ). Умножим обе части равенства (2) на матрицу , тогда

По определению обратной матрицы . Из равенства (3) имеем

Решить систему с помощью обратной матрицы

.

Обозначим

В примере (§ 3)мы вычислили определитель , следовательно, матрица A имеет обратную матрицу . Тогда в силу (4) , т.е.

. (5)

Найдем матрицу (см. §6 главы 1 )

, , ,

, , ,

,

.

Метод Гаусса.

Пусть задана система линейных уравнений:

. (I)

Требуется найти все решения системы (I) или убедиться в том, что система несовместна.

Определение 1. Назовем элементарным преобразованием системы (I) любое из трёх действий:

1) вычёркивание нулевого уравнения;

2) прибавление к обеим частям уравнения соответствующих частей другого уравнения, умноженных на число l;

3) перемена местами слагаемых в уравнениях системы так, чтобы неизвестные с одинаковыми номерами во всех уравнениях занимали одинаковые места, т.е. если, например, в 1-ом уравнении мы поменяли 2-ое и 3-е слагаемые, тогда то же самое необходимо сделать во всех уравнениях системы.

Метод Гаусса состоит в том, что система (I) с помощью элементарных преобразований приводится к равносильной системе, решение которой находится непосредственно или устанавливается её неразрешимость.

Как было описано в §2 система (I) однозначно определяется своей расширенной матрицей и любое элементарное преобразование системы (I) соответствует элементарному преобразованию расширенной матрицы:

.

Преобразование 1) соответствует вычёркиванию нулевой строки в матрице , преобразование 2) равносильно прибавлению к соответствующей строке матрицы другой её строки, умноженной на число l, преобразование 3) эквивалентно перестановке столбцов в матрице .

Легко видеть, что, наоборот, каждому элементарному преобразованию матрицы соответствует элементарное преобразование системы (I). В силу сказанного, вместо операций с системой (I) мы будем работать с расширенной матрицей этой системы.

В матрице 1-ый столбец состоит из коэффициентов при х 1 , 2-ой столбец - из коэффициентов при х 2 и т.д. В случае перестановки столбцов следует учитывать, что это условие нарушается. Например, если мы поменяем 1-ый и 2-ой столбцы местами, то теперь в 1-ом столбце будут коэффициенты при х 2 , а во 2-ом столбце - коэффициенты при х 1 .

Будем решать систему (I) методом Гаусса.

1. Вычеркнем в матрице все нулевые строки, если такие имеются (т.е. вычеркнем в системе (I) все нулевые уравнения).

2. Проверим, есть ли среди строк матрицы строка, в которой все элементы, кроме последнего, равны нулю (назовём такую строку несовместной). Очевидно, что такой строке соответствует несовместное уравнение в системе (I) , следовательно, система (I) решений не имеет и на этом процесс заканчивается.

3. Пусть матрица не содержит несовместных строк (система (I) не содержит несовместных уравнений). Если a 11 =0 , то находим в 1-ой строке какой-нибудь элемент (кроме последнего) отличный от нуля и переставляем столбцы так, чтобы в 1-ой строке на 1-ом месте не было нуля. Будем теперь считать, что (т.е. поменяем местами соответствующие слагаемые в уравнениях системы (I)).

4. Умножим 1-ую строку на и сложим результат со 2-ой строкой, затем умножим 1-ую строку на и сложим результат с 3-ей строкой и т.д. Очевидно, что этот процесс эквивалентен исключению неизвестного x 1 из всех уравнений системы (I), кроме 1-ого. В новой матрице получаем нули в 1-ом столбце под элементом a 11 :

.

5. Вычеркнем в матрице все нулевые строки, если они есть, проверим, нет ли несовместной строки (если она имеется, то система несовместна и на этом решение заканчивается). Проверим, будет ли a 22 / =0 , если да, то находим во 2-ой строке элемент, отличный от нуля и переставляем столбцы так, чтобы . Далее умножаем элементы 2-ой строки на и складываем с соответствующими элементами 3-ей строки, затем - элементы 2-ой строки на и складываем с соответствующими элементами 4-ой строки и т.д., пока не получим нули под a 22 /

.

Произведенные действия эквивалентны исключению неизвестного х 2 из всех уравнений системы (I), кроме 1-ого и 2-ого. Так как число строк конечно, поэтому через конечное число шагов мы получим, что либо система несовместна, либо мы придём к ступенчатой матрице (см. определение 2 §7 главы 1 ) :

,

Выпишем систему уравнений, соответствующую матрице . Эта система равносильна системе (I)

.

Из последнего уравнения выражаем ; подставляем в предыдущее уравнение, находим и т.д., пока не получим .

Замечание 1. Таким образом, при решении системы (I) методом Гаусса мы приходим к одному из следующих случаев.

1. Система (I) несовместна.

2. Система (I) имеет единственное решение, если в матрице число строк равно числу неизвестных ().

3. Система (I) имеет бесчисленное множество решений, если число строк в матрице меньше числа неизвестных ().

Отсюда имеет место следующая теорема.

Теорема. Система линейных уравнений либо несовместна, либо имеет единственное решение, либо – бесконечное множество решений.

Примеры. Решить систему уравнений методом Гаусса или доказать ее несовместность:

б) ;

а) Перепишем заданную систему в виде:

.

Мы поменяли местами 1-ое и 2-ое уравнение исходной системы, чтобы упростить вычисления (вместо дробей мы с помощью такой перестановки будем оперировать только целыми числами).

Составляем расширенную матрицу:

.

Нулевых строк нет; несовместных строк нет, ; исключим 1-ое неизвестное из всех уравнений системы, кроме 1-го. Для этого умножим элементы 1-ой строки матрицы на «-2» и сложим с соответствующими элементами 2-ой строки, что равносильно умножению 1-го уравнения на «-2» и сложению со 2-ым уравнением. Затем умножим элементы 1-ой строки на «-3» и сложим с соответствующими элементами третьей строки, т.е. умножим 2-ое уравнение заданной системы на «-3» и сложим с 3-им уравнением. Получим

.

Матрице соответствует система уравнений). - (см. определение 3§7 главы 1).

Матричный метод решения СЛАУ применяют к решению систем уравнений, у которых количество уравнений соответствует количеству неизвестных. Метод лучше применять для решения систем низкого порядка. Матричный метод решения систем линейных уравнений основывается на применении свойств умножения матриц.

Этот способ, другими словами метод обратной матрицы, называют так, так как решение сводится к обычному матричному уравнению, для решения которого нужно найти обратную матрицу.

Матричный метод решения СЛАУ с определителем, который больше или меньше нуля состоит в следующем:

Предположим, есть СЛУ (система линейных уравнений) с n неизвестными (над произвольным полем):

Значит, её легко перевести в матричную форму:

AX=B , где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на A −1 — обратную матрицу к матрице A: A −1 (AX)=A −1 B.

Т.к. A −1 A=E , значит, X=A −1 B . Правая часть уравнения дает столбец решений начальной системы. Условием применимости матричного метода есть невырожденность матрицы A . Необходимым и достаточным условием этого есть неравенство нулю определителя матрицы A :

detA≠0.

Для однородной системы линейных уравнений , т.е. если вектор B=0 , выполняется обратное правило: у системы AX=0 есть нетривиальное (т.е. не равное нулю) решение лишь когда detA=0 . Эта связь между решениями однородных и неоднородных систем линейных уравнений называется альтернатива Фредгольма.

Т.о., решение СЛАУ матричным методом производится по формуле . Либо, решение СЛАУ находят при помощи обратной матрицы A −1 .

Известно, что у квадратной матрицы А порядка n на n есть обратная матрица A −1 только в том случае, если ее определитель ненулевой. Таким образом, систему n линейных алгебраических уравнений с n неизвестными решаем матричным методом только в случае, если определитель основной матрицы системы не равен нулю.

Не взирая на то, что есть ограничения возможности применения такого метода и существуют сложности вычислений при больших значениях коэффициентов и систем высокого порядка, метод можно легко реализовать на ЭВМ.

Пример решения неоднородной СЛАУ.

Для начала проверим, не равен ли нулю определитель матрицы коэффициентов у неизвестных СЛАУ.

Теперь находим союзную матрицу , транспонируем её и подставляем в формулу для определения обратной матрицы.

Подставляем переменные в формулу:

Теперь находим неизвестные, перемножая обратную матрицу и столбик свободных членов.

Итак, x=2; y=1; z=4.

При переходе от обычного вида СЛАУ к матричной форме будьте внимательными с порядком неизвестных переменных в уравнениях системы. Например :

НЕЛЬЗЯ записать как:

Необходимо, для начала, упорядочить неизвестные переменные в кадом уравнении системы и только после этого переходить к матричной записи:

Кроме того, нужно быть внимательными с обозначением неизвестных переменных, вместо x 1 , x 2 , …, x n могут оказаться другие буквы. К примеру :

в матричной форме записываем так:

Матричным методом лучше решать системы линейных уравнений, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы не равен нулю. Когда в системе более 3-х уравнений, на нахождение обратной матрицы потребуется больше вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.