Последние статьи
Домой / Аренда / Структура стали. Химические, механические и физические свойства

Структура стали. Химические, механические и физические свойства

Сталь - это сплав железа и углерода. На современном металлургическом рынке появляются новые виды стали. Давайте разберемся подробнее что же это за сплав и какими свойствами он обладает.

Давно известно, что сталь является сплавом, который в большей степени состоит из углерода и железа. Благодаря тому, что в сплаве имеется углерод, то сталь обладает боле высокими характеристиками прочности, в отличии то сплава железа. Однако, это сильно влияет на пластичность материала, то есть показатель ковкости заметно снижается.

Свойства стали

Свойства стали чаще всего напрямую зависят от наличия в ней количества химических элементов, в том числе и от углерода, количество которого варьируется 0,2-2,14%. Стоит отметить, что от данного показателя также зависит сорт стали. Благодаря увеличению процента содержания углерода в составе стали, сплав приобретает не только большую прочность, но и большую хрупкость. Сплав стали, где процентное содержание углерода свыше 2,14% уже называется чугун.

Наряду с тем, что углерод является связующим звеном в сплаве стали, то его можно заменить и некоторыми и другими химическими элементами, например, марганцем, хромом, вольфрамом, никелем, титаном, молибденом и прочими.

Разные типы и количество этих элементов, помогут определить твердость, пластичность и прочность сплава стали.

Также связующий материал отвечает за правильную поддержку кристаллической решетки, посредством блокирования движения атомов железа. Таким образом, получается что он является для стали неким затвердителем.

Плотность сплава стали зависит от процентного содержания имеющихся в нем компонентов, и колеблется от 7750 до 8050 кг/м3.

Еще один способ изменить механические свойства стали - это термические ее обработать. Этот процесс оказывает воздействия на прочностные, теплопроводные и электрические характеристики сплава.

Применение стали

На сегодняшний день имеется большой ассортимент видов стали, к примеру, углеродистая или мягкая сталь, нержавеющая или оцинкованная, и прочие, использующиеся зачастую для строительных нужд. Большое количество зданий, стадионов, железнодорожных путей, мостов и другое.

Помимо этого, сталь применяют почти во всей сферах промышленности, для производства транспортного, воздушного, водных средств и прочее.

Большое количество привычных для нас предметов также было изготовлено при применении сплава стали, к примеру, посуда, техника. В современном мире стали также применяют при обустройстве дома, планировании интерьера, для мебельной продукции. Сталь – это неотъемлемая частичка стиля Hi Tech.

Для чего необходима нержавеющая и оцинкованная сталь?

Несмотря на то, что сталь имеет ряд весомых преимуществ, к примеру, долговечность, тепло и электропроводность, то железо ей передало свой главный минус – коррозию, то есть способность подвергаться окислению.

После долгих исследований и опытов, специалисты смогли создать такой сплав стали, который больше не будет подвержен коррозии, то есть оцинкованную и нержавеющую.

Нержавеющая сталь

Нержавеющая сталь, благодаря своим особым свойствам, почти не подвергается коррозии или ржавчине. При этом она сохраняет все основные характеристики стали – стойкость к износу, пластичность и прочность.

Состав нержавеющей стали отличается тем, что в нем присутствует определенное количество элементов хрома. Количество хрома колеблется в диапазоне 10,5 -11%. Благодаря этому, на нержавеющей поверхности стали, образуется оксидовый слой хрома, являющейся инертным. Это представляет собой основную причину таких характеристик нержавеющей стали. Поэтому такая сталь применяется в тех средах, где возможно соприкосновение с водной или агрессивной средой.

Оцинкованная сталь

Точно такую же углеродистую сталь, только с нанесением на поверхность покрытие, которое способно предохранить металл от коррозии. Не сложно догадаться, что покрытие оцинкованной стали – это материал, который обладает высоким показателем к коррозии, то есть цинк. Процесс технологии, когда на поверхность стали наносится цинк, принято называть гальванизацией или цинкованием.

На нынешний момент используют два способа гальванизации:

  • Погрузка стали в расплавленный цинк.
  • Метод электролиза, то есть посредством выделения цинка на стальную поверхность, благодаря цинковым солям, где воздействует электрический ток.

Задайте свой вопрос!

Мы свяжемся с вами в ближайшее время и дадим подробную консультацию

Сталь – самый известный в мире сплав . По сути, говоря о железных конструкциях и предметах, мы говорим об изделиях (или их производстве) из той или иной стали. 99% сплава относится к категории конструкционных сталей, так что практически не существует инструментов или оборудования, где он бы ни использовался.

В этой статье мы постараемся затронуть такие темы как классификация марок, цена стали, ее свойства и применение в строительстве.

Сталь – сплав железа и углерода. В обычных случаях доля углерода колеблется от 0,1 до 2,14 %. Но, учитывая, что в состав легированных сталей может входить множество дополнительных ингредиентов, сегодня под сталью подразумевают такой сплав, где доля железа составляет не менее 45%.

О том, что такое сталь, и как ее производят, расскажет этот видеосюжет:

Понятие и особенности

Главные привлекательные качества стали – высокая прочность при доступности сырья и относительно простом способе производства. Именно такая комбинация и ставит сплавы железа в позицию абсолютного лидера. На сегодня попросту не существует такой области народного хозяйства, где стали не занимали бы позицию конструкционного материала.

  • Железо и углерод – обязательные составляющие сплава. Из них и вязкость, благодаря чему сталь относят к деформируемым, ковким сплавам. А углерод – твердость и прочность, так как твердость всегда сочетается с хрупкостью. Добавка углерода невелика и даже в специализированных составах не превышает 3,4%.
  • Кроме того, из-за способа производства, сталь всегда содержит какую-то долю марганца – до 1 %, и – до 0,4%. Эти примеси мало влияют на свойства состава, если не превышают заданную норму. По тем же причинам в составе оказываются и вредные примеси – фосфор, сера, несвязанный азот и кислород. В процессе плавки и легирования от этих ингредиентов стараются избавиться, поскольку они уменьшают прочностные и пластичные свойства сплавов.
  • В сплав вводят искусственно другие добавки с целью изменить качества материала. Так, добавка хрома придает стали жаропрочность, а – стойкость к коррозии и вязкость.
  • Чрезвычайно полезным качеством железных сплавов является то, что на изменение свойств влияют очень небольшие по весу добавки других веществ. Это позволяет значительно разнообразить качества материала. Кроме того, на свойства сплава очень сильно влияет метод изготовления собственно продукции – холодное деформирование, горячее, закалка и так далее.

Соотношение с чугуном

Наиболее близок к стали по свойствам и составу . Часть материала и производится из предельного чугуна. Однако на практике различия в характеристиках оказываются весьма заметными:

  • сталь прочнее и тверже, чем чугун;
  • и имеет более низкую температуру плавления. Обманчивое впечатление создает массивность изделий из чугуна, поскольку он менее прочен;
  • сталь легче поддается механической обработке благодаря низкому содержанию углерода. ;
  • чугун имеет более низкую теплопроводность, то есть, лучше хранят тепло, чем стальные;
  • чугун нельзя подвергнуть такой процедуре, как закалка. А последняя может значительно увеличить прочность материала.

Преимущества и недостатки

Описывать плюсы и минусы материала довольно сложно. На практике мы имеем дело с продукцией из стали, причем из сплава самых разных марок, а, значит, и свойств. А одна из особенностей материала как раз и состоит в том, что метод изготовления изделии из него тоже влияет на его свойства. Качества сварной трубы не сравнить с характеристиками трубопровода из холоднокатаной стали.

В общем, можно говорить о следующих преимуществах стали:

  • высокая прочность и твердость – свойственно всем видам;
  • огромное разнообразие свойства, обусловленное разным составом и разными методами обработки;
  • вязкость и упругость, достаточные для применения на всех участках, где требуется стойкость к ударным, статическим и динамическим нагрузкам при отсутствии остаточной деформации;
  • легкость механической обработки – сварка, нарезка, сгибание;
  • очень высокая износостойкость по сравнению с другими конструкционными материалами и, соответственно, долговечность;
  • распространенность сырья и экономически выгодный метод производства, что обуславливает доступную стоимость сплавов.

К недостаткам можно отнести следующее:

  • самый большой недостаток материала – нестойкость к коррозии. Чтобы избежать повреждений, выпускают специальные виды металла стали – нержавеющие, однако их стоимость заметно выше. Чаще проблему решают за счет покрытия стальных изделий защитным слоем металла или полимера;
  • сплав накапливает электричество, что заметно усиливает электрохимическую коррозию. Сколько-нибудь объемные конструкции – корпуса машин, трубопроводы, нуждаются в специальной защите;
  • сплав не отличается легкостью, стальные конструкции имеют большой вес и заметно утяжеляют объекты;
  • изготовление стальных изделий – многоэтапный процесс. Недочеты и ошибки на любом из этапов оборачиваются значительным снижением качества.

Разновидности металла

Подсчитать количество известных и используемых на сегодня сплавов – задача очень непростая. Классифицировать их не менее сложно: свойства материала зависят от состава, метода получения, характера добавок, способа обработки и так далее.

Чаще всего используются следующие классификации:

  • по химическому составу сталей – углеродистые и легированные;
  • по структурному составу – аустенитную, ферритную и так далее;
  • по содержанию примесей – обычного качества, качественная и так далее;
  • по методу обработки – термическая закалка – отжиг, термомеханическая – ковка, химико-термическая – азотирование;
  • по назначению – инструментальные, конструкционные, специальные стали и так далее.

О нержавеющей стали поведает это видео:

Химический состав

Сплав, по сути своей – твердый раствор. Причем компонент в твердом основном материале растворяется по другим законам, чем в жидкости. Основой получения всех железных сплавов является способность железа к полиморфизму, то есть, формированию разных структурных фаз при разной температуре. Благодаря этому углерод и другие элементы, растворенные в железе при высокой температуре, не выпадают в осадок при понижении температуры, как это происходит с обычными жидкостями, а образуют совместную структуру.

По своему составы стали делятся на углеродистые и легированные.

Углеродистые

Углеродистые – главным, то есть, определяющим свойства легирующим компонентом является углерод. Различают 3 вида:

  • малоуглеродистые – менее 0,3 %. Сплавы отличаются ковкостью и стойкостью к динамическим нагрузкам;
  • среднеуглеродистые – доля углерода варьируется от 0,3 до 0,7%;
  • высокоуглеродистые содержат более 0,7% углерода. Их отличает более высокая прочность и твердость.

Это деление связано с теми преобразованиями, которые происходят в сплавах. До содержания углерода в 0,8 % сплав сохраняет доэвтектоидную структуру, то есть, имеет ферритно-перлитную структуру. При увеличении доли углерода структура меняется на эвтектоидную и заэвтектоидную, что соответствует перлиту и цементиту. Соотношение фаз во много определяет прочностные характеристики.

Пользователь сталкивается не столько с мало- или высокоуглеродистой сталью, сколько с составом определенной марки. Марка определяется соотношением нескольких критериев, а не только содержанием углерода.

Различают по назначению 3 группы:

  • А – нормируются механические качества. Группа подразделяется на 3 категории и 6 марок. Обозначается марка Ст от 0 до 6. Ст0 – это отбракованная по каким-то показателям сталь, используемая в незначимых конструкциях. Ст6 – в наибольшей степени соответствует понятию качественная сталь;
  • Б – нормируется по своему химическому составу, делится на 2 категории и 6 марок, обозначается БСт от 0 до 6. С увеличением номера повышается прочность и текучесть материала;
  • группа В нормируется и по механическим показателям, и по составу. Она делится на 5 марок, обозначается ВСт.

Применяется дополнительная классификация по содержанию марганца. I – с нормальным содержанием элемента, то есть, 0,25– 0,8%, и II – с повышенным, до 1,2%

Легированные

Легированными называют стали, в которые специально вводят дополнительные ингредиенты для придания составу других качеств. Классификация производится по суммарному объему всех легирующих добавок – не примесей марганца или фосфора.

Различают 3 вида:

  • низколегированные – с суммарным объемом добавок до 2,5%;
  • среднелегированные – содержит от 2,5 до 10% примесей;
  • в высоколегированных доля добавок превышает 10%.

Легирование значительно усложняет структуру твердого раствора, что приводит к возникновению сложнейшей классификации по структурному составу. Маркируются марки по составу: обязательно указывается доля углерода. А затем по уменьшению указывают доли легирующих добавок. Если доля примеси менее 1% вещество не указывается.

В качестве добавок применяют как неметаллы, так и металлы.

  • Марганец – увеличивает прочность и твердость материала, улучшает режущие свойства. Но при этом способствует увеличению зерна, что уменьшается стойкость к ударным нагрузкам.
  • Хром – улучшает стойкость к ударным и статическим нагрузкам, а также повышает жаропрочность. При большой доле хрома материал становится нержавеющим.
  • – увеличивает упругость сплава. При значительном содержании придает стали коррозийную стойкость и жаропрочность.
  • Молибден – повышает твердость сплава, но при этом уменьшает хрупкость.

Наиболее известна из легированных сталей, конечно, нержавеющая. Чаще всего это хромо-никелевая и хромистая сталь с долей хрома до 27%.

Фазовый и структурный состав

Получение стали – процесс непростой и неоднозначный. Особенность его состоит в том, что при плавке сплав проходит через фазовые превращения, которые и обуславливают сочетание прочности и упругости.

Легирование углеродом происходит в 2 этапа. На первой стадии при нагреве до 725 С железо соединяется с углеродом, образуя карбид, то есть, химическое соединение, называемое цементитом. При нормальной температуре сталь включает смесь цементита и феррита. При повышении температуры выше 725 С цементит растворяется в железе, формирую другую фазу – аустенит.

С этой особенностью связана классификация сплава по структурному составу в нормализованном виде:

  • перлитная – в основном это низкоуглеродистые и низколегированные стали;
  • мартенситные – с большим содержанием добавок;
  • аутенитная – высоколегированная.

В отожженном состоянии выделяют такие структурные классы:

  • доэвтектоидный,
  • заэвтектоидный,
  • ледебуритный,
  • ферритный,
  • аустенитный.

В чем смысл подобного деления? Дело в том, что легирующие добавки оказывают разное воздействие на разные структуры стали. Так, растворение в феррите легирующих элементов приводит к увеличению временного сопротивления, за исключением марганца и кремния, которые сплав упрочняют. При легировании аустенита понижается предел текучести при относительно высокой прочности. В результате материал легко и быстро упрочняется при деформации – наклепывании.

Классификация по раскислителю

При плавке металлов частой проблемой является растворенный в них газ – кислород, азот, водород, чтобы удалить его прибегают к раскислению. В зависимости от полноты процесса различают 3 вида:

  • спокойная – металл не содержит закиси железа. В сплаве полностью отсутствуют газы, так что его свойства наиболее стабильны и однородны. Применяется для ответственных конструкций, поскольку технология его получения дорогая;
  • полуспокойная – затвердевает без кипения, но сопровождается выделением газов. Какое-то количество газов остается, однако может быть удалено при прокатке сплава. Как правило, полуспокойная сталь используется как конструкционная;
  • кипящая – содержит растворенные газы. Это сказывается на свойствах: материал склонен к трещинообразованию при сварке, например, но, так как производство кипящей стали требует меньше всего затрат, производится и такой сплав для многих простых конструкций.

Классификация по назначению

Довольно условное разделение сталей по сферам применения стали.

  • Строительные – сплавы обычного качества и низколегированные, рассчитанные на высокие статические и в некоторых случаях динамические нагрузки. Главное требование к ним – хорошая свариваемость. На деле в зависимости от характера строительного объекта, применяется материал самого разного качества.
  • Инструментальные – как правило, высокоуглеродистые и высоколегированные, применяются при изготовлении инструментов. Различают штампованные сплавы, режущие и стали для измерительных инструментов. Режущие отличаются твердостью и теплостойкостью, материал для измерительных приборов – высокой износостойкостью.
  • Конструкционные – с низким содержанием марганца. Это цементируемые, высокопрочные, автоматные, шарико-подшипниковые, износостойкие и так далее, применяемые для изготовления самых разнообразных узлов и конструкций. Столь огромного разнообразия свойств добиваются за счет легирования.
  • Порой выделяют специальные стали – жаропрочные, жаростойкие, кислотоупорные, но на деле они являются разновидностью конструкционных.

Сталь может включать полезные примеси, то есть, легирующие элементы, и вредные. По содержанию вредных и различают 4 группы:

  • рядовые – или обыкновенного качества, с долей серы не более 0,06% и фосфора не выше 0,07%;
  • качественные – допускается доля серы не более 0,04% и фосфора не более 0,035%. Процесс их изготовления дороже, но и механические свойства сталей выше;
  • высококачественные – доля серы не превышает 0,025%, а фосфора – 0,025%. Получают сплавы в основном в электропечах, чтобы добиться большой чистоты;
  • особовысококачественные – выплавляются в электропечах специальными методами. Так получают только высоколегированные стали с содержанием серы до 0,015% и фосфора – 0,025%.

Производство сплава

Процесс изготовления сплава сводится к переработке чугуна, при которой отжигаются лишние примеси и вводятся легирующие элементы. Используются при этом несколько методов.

  • Мартеновский – расплавленный или твердый чугун с рудой плавят в мартеновской печи при 2000 С, чтобы отжечь лишний углерод. Добавки вводят в конце плавки. Сталь разливают в ковши и переправляют в прокатный цех.
  • Кислородно-конвертерный – более производительный. Сквозь чугун в печи продувают воздух или смесь воздуха с кислородом, добиваясь более быстрого и полного отжига.
  • Электроплавильный – плавка осуществляется в закрытой печи при 2200 С, что исключает попадание в сплав газов. Дорогостоящий метод, которым получают лишь высококачественные составы.
  • Прямой метод – в шахтной печи окатыши, получаемые из железной руды продувают продуктами сгорания природного газа – смесью кислорода, угарного газа, аммиака, при температуре в 1000 С.

На этом процесс изготовления стали не заканчивается. В тех случаях, когда необходимо получить максимально прочный материал, прибегают к дополнительной обработке.

Термический метод

К термическим способам относится:

  • отжиг – нагрев и медленное охлаждение разных видов и с разной скоростью;
  • закалка – нагрев выше критической температуры, что вызывает перекристаллизацию сплава, и быстрее охлаждение;
  • отпуск – процедура, осуществляет вслед за закалкой с целью уменьшить напряжение металла;
  • нормализация – тот же отжиг, но проводимый не в печи, а на воздухе.

Термомеханический способ

Термомеханические методы сочетают механическое и термическое воздействие:

  • высокотемпературная ТМО – закалка – наклеп, упрочнение, производится сразу же после нагрева, пока сплав сохраняет аустенитную структуру. Изменение вследствие пластической деформации при прокатке или штамповке сохраняется на 70% и после охлаждения и сталь оказывается более прочной;
  • при низкотемпературной ТМО – холоднокатаная сталь. Сплав нагревают для аустенитного состояния, охлаждают ниже точек рекристаллизации, чтобы добиться появления мартенситной фазы – в пределах 400– 600 С. Затем производится закалка – наклеп, прокатка. При охлаждении эффект полностью сохраняется.

Термохимическая обработка

Термохимическая обработка представляется собой нагрев сплавов и выдержку их в определенных химических средах. К наиболее известным методам относят:

  • цементацию – насыщение поверхности сплава углеродом. Таким образом получают износостойкий верхний слой;
  • азотирование – насыщение стали азотом. Цель такая же – получение верхнего износостойкого слоя, но по сравнению с цементацией, азотирование обеспечивает более высокую стойкость к коррозии;
  • нитроцементацию и цианирование – насыщение поверхностного слоя и углеродом и азотом. Обеспечивает более высокую скорость и производительность процесса.

Стоимость материала

Стоимость материала не менее разнообразна, чем количество марок. Условная сталь на Лондонской бирже металлов в декабре 2016 г стоит 325 $ за тонну. Стоимость нержавеющей стали заметно выше: холоднокатаная нержавеющая сталь сорта 304 в декабре оценивается в пределах от 1890 до 1925 $ за тонну.

Сталь – самый востребованный и самый распространенный металлический сплав в мире. Говоря о в народном хозяйстве, имеют в виду именно разнообразные стальные сплавы.

О том, как плавится сталь, смотрите в видео ниже:

Ромашкин А.Н.

Сталь - деформируемый (ковкий) сплав железа с углеродом (до 2,14%) и другими элементами. Получают, главным образом, из смеси чугуна со стальным ломом в кислородных конвертерах, мартеновских печах и электропечах. Сплав железа с углеродом, содержащий более 2,14% углерода, называют чугуном.

99% всей стали - материал конструкционный в широком смысле слова: включая стали для строительных сооружений, деталей машин, упругих элементов, инструмента и для особых условий работы - теплостойкие, нержавеющие, и т.п. Его главные качества - прочность (способность выдерживать при работе достаточные напряжения), пластичность (способность выдерживать достаточные деформации без разрушения как при производстве конструкций, так в местах перегрузок при их эксплуатации), вязкость (способность поглощать работу внешних сил, препятствуя распространению трещин), упругость, твердость, усталость, трещиностойкость, хладостойкость, жаропрочность.

Для изготовления подшипников широко используют шарикоподшипниковые хромистые стали ШХ15 и ШХ15СГ. Шарикоподшипниковые стали обладают высокой твердостью, прочностью и контактной выносливостью.

Пружины, рессоры и другие упругие элементы работают в области упругой деформации материала. В то же время многие из них подвержены воздействию циклических нагрузок. Поэтому основные требования к пружинным сталям - это обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению (55С2, 60С2А, 50ХФА, 30Х13, 03Х12Н10Д2Т).

Высокопрочные стали имеют высокую прочность при достаточной пластичности (среднеуглеродистая легированная сталь 40ХН2МА), высокой конструктивной прочностью, малой чувствительностью к надрезам, высоким сопротивлением хрупкому разрушению, низким порогом хладноломкости, хорошей свариваемостью.

Классификация сталей и сплавов производится:

  • по химическому составу;
  • по структурному составу;
  • по качеству (по способу производства и содержанию вредных примесей);
  • по степени раскисления и характеру затвердевания металла в изложнице;
  • по назначению.

Химический состав
По химическому составу углеродистые стали делят в зависимости от содержания углерода на следующие группы:

  • малоуглеродистые - менее 0,3% С;
  • среднеуглеродистые - 0,3...0,7% С;
  • высокоуглеродистые - более 0,7 %С.

Для улучшения технологических свойств стали легируют. Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Сr, Ni, Мо, Wo, V, Аl, В, Тl и др.), а также Mn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:

  • низколегированные - менее 2,5%;
  • среднелегированные - 2,5...10%;
  • высоколегированные - более 10%.

Структурный состав
Легированные стали и сплавы делятся также на классы по структурному составу:

  • в отожженном состоянии - доэвтектоидный, заэвтектоидный, ледебуритный (карбидный), ферритный, аустенитный;
  • в нормализованном состоянии - перлитный, мартенситный и аутенитный.

К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному - с более высоким и к аустенитному - с высоким содержанием легирующих элементов.

Классификация стали по содержанию примесей

По качеству, то есть по способу производства и содё примесей, стали и сплавы делятся на четыре группы
Классификация сталей по качеству

Группа S, % Р, %
Обыкновенного качества (рядовые) менее 0,06 менее 0,07
Качественные менее 0,04 менее 0,035
Высококачественные менее 0,025 менее 0,025
Особовысококачественные менее 0,015 менее 0,025

Стали обыкновенного качества

Стали обыкновенного качества (рядовые) по химическому составу -углеродистые стали, содержащие до 0,6% С. Эти стали выплавляются в конвертерах с применением кислорода или в больших мартеновских печах. Примером данных сталей могут служить стали СтО, СтЗсп, Ст5кп.
Стали обыкновенного качества, являясь наиболее дешевыми, уступают по механическим свойствам сталям других классов.

Стали качественные

Стали качественные по химическому составу бывают углеродистые или легированные (08кп, 10пс, 20). Они также выплавляются в конвертерах или в основных мартеновских печах, но с соблюдением более стро-гих требований к составу шихты, процессам плавки и разливки.
Углеродистые стали обыкновенного качества и качественные по степени раскисления и характеру затвердевания металла в изложнице делятся на спокойные, полуспокойные и кипящие. Каждый из этих сортов отличается содержанием кислорода, азота и водорода. Так в кипящих сталях содержится наибольшее количество этих элементов.

Стали высококачественные

Стали высококачественные выплавляются преимущественно в электропечах, а особо высококачественные - в электропечах с электрошлаковым переплавом (ЭШП) или другими совершенными методами, что гарантирует повышенную чистоту по неметаллическим включениям (содержание серы и фосфора менее 0,03%) и содержанию газов, а следовательно, улучшение механических свойств. Это такие стали как 20А, 15Х2МА.

Стали особовысококачественные

Особовысококачественные стали подвергаются электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов. Данные стали выплавляются только легированными. Их производят в электропечах и методами специальной электрометаллургии. Содержат не более 0,01% серы и 0,025% фосфора. Например: 18ХГ-Ш, 20ХГНТР-Ш.

Классификация стали по назначению

По назначению стали и сплавы классифицируются на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами.

Конструкционные стали

Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, износостойкие стали.

Строительные стали

К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям - их хорошая свариваемость. Например: С255, С345Т, С390К, С440Д.

Стали для холодной штамповки

Для холодной штамповки применяют листовой прокат из низкоуглеродистых качественных марок стали 08Ю, 08пс и 08кп.

Цементируемые стали

Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки. К цементируемым относятся малоуглеродистые стали, содержащие 0,1-0,3% углерода (такие, как 15, 20, 25), а также некоторые легированные стали (15Х, 20Х, 15ХФ, 20ХН 12ХНЗА, 18Х2Н4ВА, 18Х2Н4МА, 18ХГТ, ЗОХГТ, 20ХГР).

Улучшаемые стали

К улучшаемым сталям относят стали, которые подвергают улучшению - термообработке, заключающейся в закалке и высоком отпуске. К ним относятся среднеуглеродистые стали (35, 40, 45, 50), хромистые стали (40Х, 45Х, 50Х), хромистые стали с бором (ЗОХРА, 40ХР), хромоникелевые, хромокремниемарганцевые, хромоникельмолибденовые стали.

Высокопрочные стали

Высокопрочные стали - это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях - таких, как ЗОХГСН2А, 40ХН2МА, ЗОХГСА, 38ХНЗМА, ОЗН18К9М5Т, 04ХИН9М2Д2ТЮ.

Пружинные стали

Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости - кремнием, марганцем, хромом, вольфрамом, ванадием, бором (60С2, 50ХГС, 60С2ХФА, 55ХГР).

Подшипниковые стали

Подшипниковые (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. К подшипниковым предъявляют повышенные требования на отсутствие различных включений, макро- и микропористости. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома (ШХ9, ШХ15).

Автоматные стали

Автоматные стали используют для изготовления неответственных деталей массового производства (винты, болты, гайки и др.)> обрабатываемых на станках-автоматах. Эффективным металлургическим приемом повышения обрабатываемости резанием является введение в сталь серы, селена, теллура, а также свинца, что способствует образованию короткой и ломкой стружки, а также уменьшает трение между резцом и стружкой. Недостаток автоматных сталей - пониженная пластичность. К автоматным сталям относятся такие стали, как А12, А20, АЗО, А40Г, АС11, АС40, АЦ45Г2, АСЦЗОХМ, АС20ХГНМ.

Износостойкие стали

Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.)- Пример износостойкой стали - высокомарганцовистая сталь 110Г13Л.

Коррозионно-стойкие (нержавеющие) стали

Коррозионно-стойкие (нержавеющие) стали - легированные стали с большим содержанием хрома (не менее 12%) и никеля. Хром образует на поверхности изделия защитную (пассивную) оксидную пленку. Углерод в нержавеющих сталях - нежелательный элемент, а чем больше хрома, тем выше коррозионная стойкость.
Структура для наиболее характерных сплавов этого назначения может быть:

  • ферритно-карбидной и мартенситной (12X13, 20X13, 20Х17Н2, 30X13, 40X13, 95X18 - для слабых агрессивных сред (воздух, вода, пар);
  • ферритной (15X28) - для растворов азотной и фосфорной кислот;
  • аустенитной (12Х18НЮТ) - в морской воде, органических и азотной кислотах, слабых щелочах;
  • мартенситно-стареющей (ЮХ17Н13МЗТ, 09Х15Н8Ю) - в фосфорной, уксусной и молочной кислотах.

Сплав 06ХН28МТ может эксплуатироваться в условиях горячих (до 60°С) фосфорной и серной (концентрации до 20%) кислот.
Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные и криогенные.

Коррозионно-стойкие стали

Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.

Жаропрочные стали

Жаропрочные стали способны работать в нагруженном состоянии при высоких температурах в течение определенного времени и при этом обладают достаточной жаростойкостью. Данные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).
Для жаропрочных и жаростойких машиностроительных сталей используются малоуглеродистые (0,1-0,45% С) и высоколегированные (Si, Cr, Ni, Со и др.). Жаропрочные стали и сплавы в своем составе обязательно содержат никель, который обеспечивает существенное увеличение предела длительной коррозионной прочности при незначительном увеличении предела текучести и временного сопротивления, и марганец. Они могут дополнительно легироваться молибденом, вольфрамом, ниобием, титаном, бором, иодом и др. Так, микролегирование бором, а также редкоземельными и некоторыми щелочноземельными металлами повышает такие характеристики, как число оборотов при кручении, пластичность и вязкость при высоких температурах.
Рабочие температуры современных жаропрочных сплавов составляют примерно 45-80% от температуры плавления. Эти стали классифицируют по температуре эксплуатации (ГОСТ 20072-74):
при 400-550°С - 15ХМ, 12Х1МФ, 25Х2М1Ф, 20ХЗМВФ;
при 500-600°С - 15Х5М, 40ХЮС2М, 20X13;
при 600-650°С - 12Х18Н9Т, 45Х14Н14В2М, ЮХЦН23ТЗМР,
ХН60Ю, ХН70Ю, ХН77ТЮР, ХН56ВМКЮ, ХН62МВКЮ.

Жаростойкие стали

Жаростойкие (окалиностойкие) стали обладают стойкостью против химического разрушения поверхности в газовых средах, в том числе серосодержащих, при температурах +550-1200°С в воздухе, печных газах (15X5, 15Х6СМ, 40Х9С2, ЗОХ13Н7С2, 12X17, 15X28), окислительных и науглероживающих средах (20Х20Н14С2, 20Х23Н18) и работают в ненагруженном или слабонагруженном состоянии, так как могут проявлять ползучесть при приложении больших нагрузок. Жаростойкие стали характеризуют по температуре начала интенсивного окисления. Величина этой температуры определяется содержанием хрома в сплаве. Так, при. 15% Cr температура эксплуатации изделий составляет +950°С, а при 25% Cr до +130СГС. Жаростойкие стали также легируют никелем, кремнием, алюминием.

Криогенные стали

Криогенные машиностроительные стали и сплавы (ГОСТ 5632-72) по химическому составу являются низкоуглеродистыми (0,10% С) и высоколегированными (Cr, N1, Mn и др.) сталями аустенитного класса (08Х18НЮ, 12Х18НЮТ, ОЗХ20Н16АГ6, ОЗХ13АП9 и др.). Основными потребительскими свойствами этих сталей являются пластичность и вяз-кость, которые с понижением температуры (от +20 до -196°С) либо не меняются, либо мало уменьшаются, т.е. не происходит резкого уменьшения вязкости, характерного при хладноломкости. Криогенные машиностроительные стали классифицируют по температуре эксплуатации в диапазоне от -196 до -296°С и используют для изготовления деталей криогенного оборудования.

Инструментальные стали

Инструментальные стали по назначению делят на стали для режущих, измерительных инструментов, штамповые стали.

Стали для режущих инструментов

Стали для режущих инструментов должны быть способными сохранять высокую твердость и режущую способность продолжительное время, том числе и при нагреве. В качестве сталей для режущих инструментов применяют углеродистые, легированные инструментальные, быстрорежущие стали.

Углеродистые инструментальные стали

Углеродистые инструментальные стали содержат 0,65-1,32% углерода. Например, стали марок У7, У7А, У13, У13А. К данной группе, помимо нелегированных углеродистых инструментальных сталей, условно относят также стали с небольшим содержанием легирующих элементов, которые не сильно отличаются от углеродистых.

Легированные инструментальные стали

В данную группу сталей входят стали, содержащие легирующие элементы в количестве 1-3%. Легированные инструментальные стали имеют повышенную (по сравнению с углеродистыми инструментальными сталями) теплостойкость - до +300°С. Наиболее широко используют стали 9ХС (сверла, фрезы, зенкеры), ХВГ (протяжки, развертки), ХВГС (фрезы, зенкеры, сверла больших диаметров).

Быстрорежущие стали

Быстрорежущие стали применяют для изготовления различного режущего инструмента, работающего на высоких скоростях резания, так как они обладают высокой теплостойкостью - до +650°С. Наибольшее распространение получили быстрорежущие стали марок Р9, Р18, Р6М5, Р9Ф5, РЮК5Ф5.

Стали для измерительных инструментов

Инструментальные стали для измерительных инструментов (плиток, калибров, шаблонов) помимо твердости и износостойкости должны сохранять постоянство размеров и хорошо шлифоваться. Обычно применяют стали У8...У12, X, 12X1, ХВГ, Х12Ф1. Измерительные скобы, шкалы, линейки и другие плоские и длинные инструменты изготовляют из листовых сталей 15, 15Х. Для получения рабочей поверхности с высокой твердостью и износостойкостью инструменты подвергают цементации и закалке.

Штамповые стали

Штамповые стали обладают высокой твердостью и износостойкостью, прокаливаемостью и теплостойкостью.

Стали для штампов холодного деформирования

Эти стали должны обладать высокой твердостью, износостойкостью и прочностью, сочетающейся с достаточной вязкостью, также должны быть теплостойкими. Например Х12Ф1, Х12М, Х6ВФ, 6Х5ВЗМФС, 7ХГ2ВМ. Во многих случаях для изготовления штампов для холодного деформирования используют быстрорежущие стали.

Стали для штампов горячего деформирования

Эти стали должны иметь высокие механические свойства (прочность и вязкость) при повышенных температурах и обладать износостойкостью, окалиностойкостью, разгаростойкостью и высокой теплопроводностью. Примером таких сталей могут служить стали 5ХНМ, 5ХНВ, 4ХЗВМФ, 4Х5В2ФС, ЗХ2В8Ф, 4Х2В5МФ.

Валковые стали

Данные стали применяют для рабочих, опорных и прочих валков прокатных станов, бандажей составных опорных валков, ножей для холодной резки металла, обрезных матриц и пуансонов. К валковым сталям относят такие марки стали, как 90ХФ, 9X1, 55Х, 60ХН, 7Х2СМФ.

Требования к стали для валков

Высокая прокаливаемость. Для обеспечения высокой закаливаемости необходимо использование таких марок стали, устойчивость переохлажденного аустенита которых в обеих областях превращения, во возможности, достаточна для развития мартенситного превращения при минимальных скоростях охлаждения, например, в масле.

Глубокая прокаливаемость. Прокаливаемость - это глубина закаленного слоя или, другими словами, глубина проникновения мартенсита. Она зависит от химического состава, размеров деталей и условий охлаждения. Легирующие элементы, а также увеличение содержания углерода (0,8%) в стали способствуют увеличению ее прокаливаемости, поэтому необходимую прокаливаемость обеспечивают за счет оптимизации химического состава стали. Для данного типа стали необходима практически сквозная прокаливаемость, так как при этом обеспечивается жесткость валка, без которой затруднительно получение высокой точности проката. Среди элементов, увеличивающих прокаливаемость - кремний и бор.

Высокая износостойкость . Необходима для безаварийной работы стана. При высокой износостойкости образование абразивных частиц износа не происходит, система подшипников работает более надежно.

Высокая контактная прочность . Контактная прочность рабочего слоя валков должна быть выше контактных напряжений, возникающих в процессе прокатки с учетом естественных нагрузок.

Минимальная склонность к деформации и короблению в процессе термической обработки и неизменность размеров в процессе эксплуатации .

Удовлетворительная обрабатываемость при мехобработке, хорошая шлифуемость и полируемость для обеспечения высокой чистоты поверхности валков и, следовательно, высокого качества поверхности прокатываемого материала.

Классификация сталей, производство сталей, способы получения.

Сталь

Сталь (от нем. Stahl )— сплав железа с углеродом и/или с другими элементами. Сталь содержит не более 2,14% углерода (при большем количестве углерода в железе образуется чугун). Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.
Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45% железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).

Классификация

Стали делятся на конструкционные и инструментальные. Разновидностью инструментальной является быстрорежущая сталь.
По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода — на низкоуглеродистые (до 0,25% С), среднеуглеродистые (0,25—0,6% С) и высокоуглеродистые (0,6—2% С); легированные стали по содержанию легирующих элементов делятся на низколегированные — до 4% легирующих элементов, среднелегированные — до 11% легирующих элементов и высоколегированные — свыше 11% легирующих элементов.
Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.
По структуре сталь разделяется на аустенитную, ферритную, мартенситную, бейнитную и перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.
По степени раскисления и характеру затвердевания — стали спокойные, полуспокойные и кипящие.

Производство стали

Суть процесса переработки чугуна на сталь состоит в уменьшении до нужной концентрации содержания углерода и вредных примесей — фосфора и серы, которые делают сталь хрупкой и ломкой. В зависимости от способа окисления углерода существуют различные способы переработки чугуна на сталь: конверторный, мартеновский и электротермический. К финансовому кризису в 2008 году Украина оставалась одной из немногих стран, где широко использовался мартеновский способ выплавки стали, достаточно энергозатратный и экологически вредный. Сейчас большинство мартеновских печей в Украине выведено из эксплуатации, а те что остались, вскоре также будут закрыты. Мартеновский способ выплавки стали не выдерживает конкуренции, обострившейся на мировых рынках после 2008 г. Таким образом, сейчас в Украине, как и во всем мире, подавляющее большинство стальной продукции производится конвертерным способом. Украина по состоянию на 2008 г. занимает пятое место в мире по объёмам экспорта стали, 76,46 % стали, производимой на мировом рынке, приходится на десять ведущих стран.

Кислородно-конверторный способ получения стали

По этому способу окисления избыток углерода и других примесей чугуна окисляют в присутствии кислородом воздуха, который продувают сквозь расплавленный чугун под давлением в специальных печах — конверторах. Конвертер представляет собой грушевидную стальную печь, футерованную внутри огнеупорным кирпичом. Он может поворачиваться вокруг своей оси. Емкость конвертора 50—60 т. Материалом его футеровки служит либо динас (в состав которого входят главным образом SiO2, имеющий кислотные свойства), либо доломитная масса (смесь CaO и MgO, которые получают из доломита MgCO3·CaCO3; эта масса имеет основные свойства). В зависимости от материала футеровки печи конверторный способ разделяют на два вида: бессемеровский и томасовский.

Бессемеровский способ

Бессемеровским способом перерабатывают чугуны, содержащие мало фосфора и серы и богатые кремнием (не менее 2%). При продувке кислорода сначала окисляется кремний с выделением значительного количества тепла. Вследствие этого начальная температура чугуна примерно с 1300°C быстро поднимается до 1500—1600°С. Выгорание 1% Si обусловливает повышение температуры на 200°C. Около 1500°C начинается интенсивное выгорание углерода. Вместе с ним интенсивно окисляется и железо, особенно к концу выгорания кремния и углерода:

  • Si + O2 = SiO2
  • 2C + O2 = 2CO
  • 2Fe + O2 = 2FeO

Образующийся монооксид железа, FeO, хорошо растворяется в расплавленном чугуне и частично переходит в сталь, а частично реагирует с SiO2 и в виде силиката железа FeSiO3 переходит в шлак:

  • FeO + SiO2 = FeSiO3

Фосфор полностью переходит из чугуна в сталь. Так P2O5 при избытке SiO2 не может реагировать с основными оксидами, поскольку SiO2 с последними реагирует более энергично. Поэтому фосфористые чугуны перерабатывать в сталь этим способом нельзя.
Все процессы в конверторе идут быстро — в течение 10—20 минут, так как кислород воздуха, продуваемый через чугун, реагирует с соответствующими веществами сразу по всему объёму металла. При продувке воздухом, обогащенным кислородом, процессы ускоряются. Монооксид углерода CO, образующийся при выгорании углерода, пробулькивает вверх, сгорает там, образуя над горловиной конвертора факел светлого пламени, который по мере выгорания углерода уменьшается, а затем совсем исчезает, что и служит признаком окончания процесса. Получаемая при этом сталь содержит значительные количества растворенного монооксида железа FeO, который сильно снижает качество стали. Поэтому перед разливкой сталь надо обязательно раскислить с помощью различных раскислителей — ферросилиция, фероманганца или алюминия:

  • 2FeO + Si = 2Fe + SiO2
  • FeO + Mn = Fe + MnO
  • 3FeO + 2Al = 3Fe + Al2O3

Монооксид марганца MnO как основной оксид реагирует с SiO2 и образует силикат марганца MnSiO3, который переходит в шлак. Оксид алюминия как нерастворимое при этих условиях вещество тоже всплывает наверх и переходит в шлак. Несмотря на простоту и высокую продуктивность, бессемеровский способ теперь не слишком распространен, поскольку он имеет ряд существенных недостатков. Так, чугун для бессемеровского способа должен быть с наименьшим содержанием фосфора и серы, что далеко не всегда возможно. При этом способе происходит очень большое выгорания металла, и выход стали составляет лишь 90% от массы чугуна, а также расходуется много раскислителей. Серьезным недостатком является невозможность регулирования химического состава стали.
Бессемеровская сталь содержит обычно менее 0,2% углерода и используется как техническое железо для производства проволоки, болтов, кровельного железа и т. п.

Томасовский способ

Томасовским способом перерабатывают чугун с большим содержанием фосфора (до 2 % и более). Основное отличие этого способа от бессемеровского заключается в том, что футеровку конвертера делают из оксидов магния и кальция. Кроме того, к чугуну добавляют ещё до 15 % CaO. Вследствие этого шлакообразующие вещества содержат значительный избыток оксидов с основными свойствами.
В этих условиях фосфатный ангидрид P2O5, который возникает при сгорании фосфора, взаимодействует с избытком CaO с образованием фосфата кальция и переходит в шлак:

  • 4P + 5O2 = 2P2O5
  • P2O5 + 3CaO = Ca3(PO4)2

Реакция горения фосфора является одним из главных источников тепла при этом способе. При сгорании 1 % фосфора температура конвертора поднимается на 150 °C. Сера выделяется в шлак в виде нерастворимого в расплавленной стали сульфида кальция CaS, который образуется в результате взаимодействия растворимого FeS с CaO по реакции:

  • FeS + CaO = FeO + CaS

Все последние процессы происходят так же, как и при бессемеровском способе. Недостатки Томасовского способа такие же, как и бессемеровского. Томасовская сталь также малоуглеродная и используется как техническое железо для производства проволоки, кровельного железа и т. п.
В СССР Томасовский способ применяли для переработки фосфористого чугуна с керченского бурого железняка. Получаемый при этом шлак содержит до 20 % P2O5. Его размалывают и применяют как фосфорное удобрение на кислых почвах.

Мартеновская печь

Мартеновский способ отличается от конверторного тем, что выжигание избытка углерода в чугуне происходит не только за счет кислорода воздуха, но и кислорода оксидов железа, которые добавляются в виде железной руды и ржавого железного лома.
Мартеновская печь состоит из плавильной ванны, перекрытой сводом из огнеупорного кирпича, и особых камер рекуператоров для предварительного подогрева воздуха и горючего газа. Рекуператоры заполнены насадкой из огнеупорного кирпича. Когда первые два рекуператора нагреваются печными газами, горючий газ и воздух вдуваются в печь через раскаленные третий и четвёртый рекуператоры. Через некоторое время, когда первые два рекуператора нагреваются, поток газов направляют в противоположном направлении и т. д.
Плавильные ванны мощных мартеновских печей имеют длину до 16 м, ширину до 6 м и высоту более 1 м. Вместимость таких ванн достигает 500 т стали. В плавильную ванну загружают железный лом и железную руду. К шихте добавляют также известняк как флюс. Температура печи поддерживается при 1600—1650 °C и выше. Выгорания углерода и примесей чугуна в первый период плавки происходит главным образом за счёт избытка кислорода в горючей смеси с теми же реакциями, что и в конверторе, а когда над расплавленным чугуном образуется слой шлака — за счёт оксидов железа:

  • 4Fe2O3 + 6Si = 8Fe + 6SiO2
  • 2Fe2O3 + 6Mn = 4Fe + 6MnO
  • Fe2O3 + 3C = 2Fe + 3CO
  • 5Fe2O3 + 2P = 10FeO + P2O5
  • FeO + С = Fe + CO

Вследствие взаимодействия основных и кислотных оксидов образуются силикаты и фосфаты, которые переходят в шлак. Сера тоже переходит в шлак в виде сульфида кальция:

  • MnO + SiO2 = MnSiO3
  • 3CaO + P2O5 = Ca3(PO4)2
  • FeS + CaO = FeO + CaS

Мартеновские печи, как и конверторы, работают периодически. После разливки стали печь снова загружают шихтой и т. д. Процесс переработки чугуна в сталь в мартенах происходит относительно медленно — в течение 6—7 часов. В отличие от конвертора, в мартенах можно легко регулировать химический состав стали, добавляя к чугуну железный лом и руду в той или иной пропорции. Перед окончанием плавки нагрев печи прекращают, сливают шлак, а затем добавляют раскислители. В мартенах можно получать и легированную сталь. Для этого в конце плавки добавляют к стали соответствующие металлы или сплавы.

Электротермический способ

Электротермический способ имеет перед мартеновским и особенно конверторным целый ряд преимуществ. Этот способ позволяет получать сталь очень высокого качества и точно регулировать её химический состав. Доступ воздуха в электропечь незначительный, поэтому значительно меньше образуется монооксида железа FeO, загрязняющего сталь и ухудшающего её свойства. Температура в электропечи — не ниже 2000 °C. Это позволяет проводить плавку стали на сильно основных шлаках (которые трудно плавятся), при которых полнее удаляется фосфор и сера. Кроме того, благодаря очень высокой температуре в электропечах можно легировать сталь тугоплавкими металлами — молибденом и вольфрамом. Но в электропечах расходуется очень много электроэнергии — до 800 кВт·ч на 1 т стали. Поэтому этот способ применяют только для получения высококачественной спецстали.
Электропечи бывают разной емкости — от 0,5 до 180 т. Футеровку печи делают обычно основной (с CaO и MgO). Состав шихты может быть разный. Иногда она состоит на 90 % из железного лома и на 10 % из чугуна, иногда в ней преобладает чугун с добавками в определенной пропорции железной руды и железного лома. К шихте добавляют также известняк или известь как флюс. Химические процессы при выплавке стали в электропечах те же, что и в мартенах.
Индукционный нагрев массы металла осуществляется токами промышленной частоты, которых оказывается достаточно для нагрева, из-за большой массы этого сердечника. Для тока частотой 50 герц характерная масса выплавляемой стали в печи составляет 90-100 тонн.

Свойства стали

Физические свойства

  • Плотность ρ ≈ 7,86 г / см3; коэффициент линейного теплового расширения α = 11 … 13 · 10−6 K−1;
  • Теплопроводность k = 58 Вт / (м · K);
  • Модуль Юнга E = 210 ГПа;
  • Модуль сдвига G = 80 ГПа;
  • Коэффициент Пуассона ν = 0,28 … 0,30;
  • Удельное электрическое сопротивление(20 ° C , 0,37-0,42 % углерода) = 1,71 · 10−7 Ом · м

Зависимость свойств от состава и структуры

Свойства сталей зависят от их состава и структуры, которые формируются присутствием и процентным содержанием следующих составляющих.
Углерод — составная часть, с увеличением содержания которой в стали увеличивается её твердость и прочность, при этом пластичность уменьшается.
Кремний и марганец (в пределах 0,5...0,7 %) существенного влияния на свойства стали не оказывают.
Сера является вредной примесью, образует с железом химическое соединение FeS (сернистое железо). Сернистое железо в сталях образует с железом эвтектику с температурой плавления 1258 К, которая обусловливает ломкость материала при обработке давлением с подогревом. Указанная эвтектика при термической обработке расплавляется, в результате чего между зернами теряется связь с образованием трещин. Кроме этого, сера уменьшает пластичность и прочность стали, износостойкость и коррозионную стойкость.
Фосфор придает стали хладноломкость (хрупкость при пониженных температурах). Это объясняется тем, что фосфор вызывает сильную внутрикристаллическую ликвацию.
Феррит — железо с объемноцентрированной кристаллической решеткой и сплавы на его основе — является фазой мягкой и пластичной.
Цементит — карбид железа, химическое соединение с формулой Fe3C, наоборот, предоставляет стали твердость и хрупкость.
Перлит — эвтектоидная смесь двух фаз — феррита и цементита, содержит 1/8 цементита и поэтому имеет повышенную прочность и твердость по сравнению с ферритом. Поэтому доэвтектоидные стали гораздо более пластичны, чем заэвтектоидные.
Стали содержат до 2,14 % углерода. Фундаментом науки о стали, как сплава железа с углеродом, является диаграмма состояния сплавов железо-углерод — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры. Для улучшения механических и других характеристик сталей применяют легирование. Главная цель легирования подавляющего большинства сталей — повышение прочности за счет растворения легирующих элементов в феррите и аустените, образования карбидов и увеличения прокаливаемости. Кроме того, легирующие элементы могут повышать устойчивость против коррозии, термостойкость, жаропрочность и др. Такие элементы как хром, марганец, молибден, вольфрам, ванадий, титан образуют карбиды, а никель, кремний, медь, алюминий карбидов не образуют. Кроме того, легирующие элементы уменьшают критическую скорость охлаждения при закалке, что необходимо учитывать при назначении режимов закалки (температуры нагрева и среды для охлаждения). При значительном количестве легирующих элементов может существенно измениться структура, что приводит к образованию новых структурных классов по сравнению с углеродистыми сталями.

Обработка стали

Виды термообработки

Сталь в исходном состоянии достаточно пластична, её можно обрабатывать путем деформирования: ковать, вальцевать, штамповать. Характерной особенностью стали является её способность существенно изменять свои механические свойства после термической обработки сущность которой заключается в изменении структуры стали при нагреве, выдержке и охлаждении, согласно специальному режиму. Различают следующие виды термической обработки:

  • отжиг;
  • нормализация;
  • закалки;
  • отпуск.

Чем богаче сталь на углерод, тем она тверже после термической обработки. Сталь с содержанием углерода до 0,3 % (техническое железо) практически закаливанию не поддается.

Химико-термическая обработка сталей

Химико-термическая обработка сталей в дополнение к изменениям в структуре стали также приводит к изменению химического состава поверхностного слоя путем добавления различных химических веществ до определенной глубины поверхностного слоя. Эти процедуры требуют использования контролируемых систем нагрева и охлаждения в специальных средах. Среди наиболее распространенных целей, относящихся при использовании этих технологий является повышение твердости поверхности при высокой вязкости сердцевины, уменьшение сил трения, повышения износостойкости, повышения устойчивости к усталости и улучшения коррозионной стойкости. К этим методам относятся:

  • Цементация (C) увеличивает твердость поверхности мягкой стали из-за увеличения концентрации углерода в поверхностных слоях.
  • Азотирования (N) как и цементация увеличивает поверхностную твердость и износостойкость стали.
  • Цианирования и нитроцементация (N + C) — это процесс одновременного насыщения поверхности сталей углеродом и азотом. При цианировании используют расплавы солей, имеющих в своем составе группу NaCN, а при нитроцементации — смесь аммиака с газами, которые имеют в составе углерод (СО, СН4 и ​​др.). После цианирования и нитроцементации проводят закаливание и низкий отпуск.
  • Сульфатирования (S) — насыщение поверхности серой улучшает приработки трущихся поверхностей деталей, уменьшается коэффициент трения.

Долговечность и надежность механизмов зависят от материала, из которого они были изготовлены, то есть от совокупности всех его свойств и особенностей, которые и определяют эксплуатационные характеристики. На сегодняшний день большинство узлов и деталей машин производят из различных марок сталей. Рассмотрим этот материал более подробно.

Что такое сталь

Сталь - это сплав двух химических элементов: железа (Fe) и углерода (С), причем содержание последнего не должно превышать 2%. Если углерода больше, то этот сплав относится к чугунам.

Но сталь - это не только химически чистое соединение двух элементов, она содержит как вредные примеси, например серу и фосфор, так и специальные добавки, которые придают нужные свойства материалу - повышают прочность, улучшают обрабатываемость, пластичность и т. д.

Если в сплаве углерода менее 0,025% и содержится незначительное количество примесей, то его считают техническим железом. Этот материал отличается от сталей по всем показателям, он обладает высокими магнитными характеристиками, и его используют в качестве для изготовления электротехнических элементов. Чистого железа в природе не существует, получить его даже в лабораторных условиях очень сложно.

Несмотря на то что углерода в процентном отношении содержится совсем немного, он оказывает значительное влияние на механические и технические свойства материала. Увеличение этого вещества приводит к увеличению твердости, растет прочность, но при этом резко снижается пластичность. И, как следствие, меняются технологические характеристики: с ростом углерода снижаются литейные свойства, ухудшается обрабатываемость резанием. При этом низкоуглеродистые стали также плохо обрабатываются резанием.

Получение стали. Металловедение

Сталь - это самый распространенный сплав на планете. Получают ее промышленным способом из чугуна, из которого под влиянием высоких температур выжигают избыток углерода и другие примеси. Стали в основном получают двумя способами: плавление в мартеновских печах и плавление электропечах. Материал, изготовленный в электропечи, называется электросталь. Она получается более чистой по составу. Кроме того, существует множество специальных процессов для получения сплавов с особыми свойствами, например электродуговая плавка в вакууме или электронно-лучевая плавка.

Более подробно о сталях и других сплавах можно узнать при изучении такой науки, как металловедение. Она считается одним из разделов физики и охватывает не только сведения о марках стали и их составе, но и содержит сведения о структуре и свойстве материалов на атомарном и структурном уровне.

Студенты профильных ВУЗов проходят специальный курс «Промышленные стали», где подробно разбирают сплавы специального назначения: строительные, улучшаемые, цементируемые, для режущих и измерительных инструментов, магнитные, рессорно-пружинные, жаростойкие, стали для конструкций в холодном климате и т. д.

Классификация сталей по качеству

Все стали по качеству подразделяют на:

Сталь обыкновенного качества;

Качественная;

Сталь повышенного качества;

Высококачественная.

Качество стали напрямую зависит от процента содержания вредных примесей (состав) и соответствия заявленным механическим и технологическим характеристикам. В промышленности используются все виды, но по разным направлениям: стали обыкновенного качества - для неответственных деталей, стали повышенного качества и высококачественные - в конструкциях, к которым предъявляются особые требования.

Стали по ГОСТ: классификация


Сталь. Свойства: таблицы для самых распространенных марок с основными механическими и технологическими характеристиками

Марка стали

Механические свойства

Технологические свойства

Обрабатываемость резанием

Свариваемость

Пластичность при холодной обработке давлением

горячекатанная

Н - низкая;

У- удовлетворительная;

В - высокая;

σт - физический предел текучести, МПа;

σв - предел прочности при растяжении, МПа;

δ - относительное удлинение, %.