Последние статьи
Домой / Прописка / Построить интервальный вариационный ряд. Построение рядов распределения

Построить интервальный вариационный ряд. Построение рядов распределения

Дискретный вариационный ряд строится для дискретный признаков.

Для того, чтобы построить дискретный вариационный ряд нужно выполнить следующие действия: 1) упорядочить единицы наблюдения по возрастанию изучаемого значения признака,

2) определить все возможные значения признака x i , упорядочить их по возрастанию,

значением признака, i .

частота значения признака и обозначают f i . Сумма всех частот ряда равна количеству элементов в изучаемой совокупности.

Пример 1 .

Список оценок полученных студентами на экзаменах: 3; 4; 3; 5; 4; 2; 2; 4; 4; 3; 5; 2; 4; 5; 4; 3; 4; 3; 3; 4; 4; 2; 2; 5; 5; 4; 5; 2; 3; 4; 4; 3; 4; 5; 2; 5; 5; 4; 3; 3; 4; 2; 4; 4; 5; 4; 3; 5; 3; 5; 4; 4; 5; 4; 4; 5; 4; 5; 5; 5.

Здесь число Х – оценка является дискретной случайной величиной, а полученный список оценок - статистические (наблюдаемые) данные .

    упорядочить единицы наблюдения по возрастанию изучаемого значения признака:

2; 2; 2; 2; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5.

2) определить все возможные значения признака x i , упорядочить их по возрастанию:

В данном примере все оценки можно разделить на четыре группы со следующими значениями: 2; 3; 4; 5.

Значение случайной величины, соответствующее отдельной группе наблюдаемых данных, называют значением признака, вариантом (вариантой) и обознпчают x i .

Число, которое показывает, сколько раз встречается соответствующее значение признака в ряде наблюдений называют частота значения признака и обозначают f i .

Для нашего примера

оценка 2 встречается - 8 раз,

оценка 3 встречается - 12 раз,

оценка 4 встречается - 23 раза,

оценка 5 встречается - 17 раз.

Всего 60 оценок.

4) записать полученные данные в таблицу из двух строк (столбцов) - x i и f i .

На основании этих данных можно построить дискретный вариационный ряд

Дискретный вариационный ряд – это таблица, в которой указаны встречающиеся значения изучаемого признака как отдельные значения по возрастанию и их частоты

  1. Построение интервального вариационного ряда

Кроме дискретного вариационного ряда часто встречается такой способ группировки данных, как интервальный вариационный ряд.

Интервальный ряд строится если:

    признак имеет непрерывный характер изменения;

    дискретных значений получилось очень много (больше 10)

    частоты дискретных значений очень малы (не превышают 1-3 при относительно большем количестве единиц наблюдения);

    много дискретных значений признака с одинаковыми частотами.

Интервальный вариационный ряд – это способ группировки данных в виде таблицы, которая имеет две графы (значения признака в виде интервала значений и частота каждого интервала).

В отличие от дискретного ряда значения признака интервального ряда представлены не отдельными значениями, а интервалом значений («от - до»).

Число, которое показывает, сколько единиц наблюдения попало в каждый выделенный интервал, называется частота значения признака и обозначают f i . Сумма всех частот ряда равна количеству элементов (единиц наблюдения) в изучаемой совокупности.

Если единица обладает значением признака, равным величине верхней границы интервала, то ее следует относить к следующему интервалу.

Например, ребёнок с ростом 100 см попадёт во 2-ой интервал, а не в первый; а ребёнок с ростом 130 см попадёт в последний интервал, а не в третий.

На основании этих данных можно построить интервальный вариационный ряд.

У каждого интервала есть нижняя граница (х н), верхняя граница (х в) и ширина интервала (i ).

Граница интервала – это значение признака, которое лежит на границе двух интервалов.

рост детей (см)

рост детей (см)

количество детей

больше 130

Если у интервала есть верхняя и нижняя граница, то он называется закрытый интервал . Если у интервала есть только нижняя или только верхняя граница, то это – открытый интервал. Открытым может быть только самый первый или самый последний интервал. В приведённом примере последний интервал – открытый.

Ширина интервала (i ) – разница между верхней и нижней границей.

i = х н - х в

Ширина открытого интервала принимается такой же, как ширина соседнего закрытого интервала.

рост детей (см)

количество детей

Ширина интервала (i)

для расчётов 130+20=150

20 (потому что ширина соседнего закрытого интервала – 20)

Все интервальные ряды делятся на интервальные ряды с равными интервалами и интервальные ряды с неравными интервалами. В интервальных рядах с равными интервалами ширина всех интервалов одинаковая. В интервальных рядах с неравными интервалами ширина интервалов разная.

В рассматриваемом примере - интервальный ряд с неравными интервалами.

При построении интервального ряда распределения решаются три вопроса:

  • 1. Сколько надо взять интервалов?
  • 2. Какова длина интервалов?
  • 3. Каков порядок включения единиц совокупности в границы интервалов?
  • 1. Количество интервалов можно определить по формуле Стер- джесса :

2. Длина интервала, или шаг интервала , обычно определяется по формуле

где R - размах вариации.

3. Порядок включения единиц совокупности в границы интервала

может быть разным, но при построении интервального ряда распределения обязательно строго определен.

Например, такой: [), при котором единицы совокупности в нижние границы включаются, а в верхние - не включаются, а переносятся в следующий интервал. Исключение в этом правиле составляет последний интервал , верхняя граница которого включает последнее число ранжированного ряда.

Границы интервалов бывают:

  • закрытые - с двумя крайними значениями признака;
  • открытые - с одним крайним значением признака (до такого-то числа или свыше такого-то числа).

С целью усвоения теоретического материала введем исходную информацию для решения сквозной задачи.

Имеются условные данные по среднесписочной численности менеджеров по продажам, количеству проданного ими однокачественного товара, индивидуальной рыночной цене на этот товар, а также объему продаж 30 фирм в одном из регионов РФ в I квартале отчетного года (табл. 2.1).

Таблица 2.1

Исходная информация для сквозной задачи

Численность

менеджеров,

Цена, тыс. руб.

Объем продаж, млн руб.

Численность

менеджеров,

Количество проданного товара, шт.

Цена, тыс. руб.

Объем продаж, млн руб.

На базе исходной информации, а также дополнительной сделаем постановку отдельных заданий. Затем представим методику их решения и сами решения.

Сквозная задача. Задание 2.1

Используя исходные данные табл. 2.1, требуется построить дискретный ряд распределения фирм по количеству проданного товара (табл. 2.2).

Решение:

Таблица 2.2

Дискретный ряд распределения фирм по количеству проданного товара в одном из регионов РФ в I квартале отчетного года

Сквозная задача. Задание 2.2

требуется построить ранжированный ряд 30 фирм по среднесписочной численности менеджеров.

Решение:

15; 17; 18; 20; 20; 20; 22; 22; 24; 25; 25; 25; 27; 27; 27; 28; 29; 30; 32; 32; 33; 33; 33; 34; 35; 35; 38; 39; 39; 45.

Сквозная задача. Задание 2.3

Используя исходные данные табл. 2.1, требуется:

  • 1. Построить интервальный ряд распределения фирм по численности менеджеров.
  • 2. Рассчитать частости ряда распределения фирм.
  • 3. Сделать выводы.

Решение:

Рассчитаем по формуле Стерджесса (2.5) количество интервалов :

Таким образом, берем 6 интервалов (групп).

Длину интервала , или шаг интервала , рассчитаем по формуле

Примечание. Порядок включения единиц совокупности в границы интервала такой: I), при котором единицы совокупности в нижние границы включаются, а в верхние - не включаются, а переносятся в следующий интервал. Исключение в этом правиле составляет последний интервал I ], верхняя граница которого включает последнее число ранжированного ряда.

Строим интервальный ряд (табл. 2.3).

Интервальный ряд распределения фирм но среднесписочной численности менеджеров в одном из регионов РФ в I квартале отчетного года

Вывод. Наиболее многочисленной группой фирм является группа со среднесписочной численностью менеджеров 25- 30 человек, которая включает 8 фирм (27%); в самую малочисленную группу со среднесписочной численностью менеджеров 40-45 человек входит всего одна фирма (3%).

Используя исходные данные табл. 2.1, а также интервальный ряд распределения фирм по численности менеджеров (табл. 2.3), требуется построить аналитическую группировку зависимости между численностью менеджеров и объемом продаж фирм и на основании ее сделать вывод о наличии (или отсутствии) связи между указанными признаками.

Решение:

Аналитическая группировка строится по факторному признаку. В нашей задаче факторным признаком (х) является численность менеджеров, а результативным признаком (у) - объем продаж (табл. 2.4).

Построим теперь аналитическую группировку (табл. 2.5).

Вывод. На основании данных построенной аналитической группировки можно сказать, что с увеличением численности менеджеров по продажам средний в группе объем продаж фирмы также увеличивается, что свидетельствует о наличии прямой связи между указанными признаками.

Таблица 2.4

Вспомогательная таблица для построения аналитической группировки

Численность менеджеров, чел.,

Номер фирмы

Объем продаж, млн руб., у

» = 59 f = 9,97

Я-™ 4 - Ю.22

74 ’25 1ПЙ1

У4 = 7 = 10,61

у = ’ =10,31 30

Таблица 2.5

Зависимость объемов продаж от численности менеджеров фирм в одном из регионов РФ в I квартале отчетного года

КОНТРОЛЬНЫЕ ВОПРОСЫ
  • 1. В чем суть статистического наблюдения?
  • 2. Назовите этапы статистического наблюдения.
  • 3. Каковы организационные формы статистического наблюдения?
  • 4. Назовите виды статистического наблюдения.
  • 5. Что такое статистическая сводка?
  • 6. Назовите виды статистических сводок.
  • 7. Что такое статистическая группировка?
  • 8. Назовите виды статистических группировок.
  • 9. Что такое ряд распределения?
  • 10. Назовите конструктивные элементы ряда распределения.
  • 11. Каков порядок построения ряда распределения?

Если изучаемая случайная величина является непрерывной, то ранжирование и группировка наблюдаемых значений зачастую не позволяют выделить характерные черты варьирования ее значений. Это объясняется тем, что отдельные значения случайной величины могут как угодно мало отличаться друг от друга и поэтому в совокупности наблюдаемых данных одинаковые значения величины могут встречаться редко, а частоты вариантов мало отличаются друг от друга.

Нецелесообразно также построение дискретного ряда для дискретной случайной величины, число возможных значений которой велико. В подобных случаях следует строить интервальный вариационный ряд распределения.

Для построения такого ряда весь интервал варьирования наблюдаемых значений случайной величины разбивают на ряд частичных интервалов и подсчитывают частоту попадания значений величины в каждый частичный интервал.

Интервальным вариационным рядом называют упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами или относительными частотами попаданий в каждый из них значений величины.

Для построения интервального ряда необходимо:

  1. определить величину частичных интервалов;
  2. определить ширину интервалов;
  3. установить для каждого интервала его верхнюю и нижнюю границы ;
  4. сгруппировать результаты наблюдении.

1 . Вопрос о выборе числа и ширины интервалов группировки приходится решать в каждом конкретном случае исходя из целей исследования, объема выборки и степени варьирования признака в выборке.

Приблизительно число интервалов k можно оценить исходя только из объема выборки n одним из следующих способов:

  • по формуле Стержеса : k = 1 + 3,32·lg n ;
  • с помощью таблицы 1.

Таблица 1

2 . Обычно предпочтительны интервалы одинаковой ширины. Для определения ширины интервалов h вычисляют:

  • размах варьирования R - значений выборки: R = x max - x min ,

где x max и x min - максимальная и минимальная варианты выборки;

  • ширину каждого из интервалов h определяют по следующей формуле: h = R/k .

3 . Нижняя граница первого интервала x h1 выбирается так, чтобы минимальная варианта выборки x min попадала примерно в середину этого интервала: x h1 = x min - 0,5·h .

Промежуточные интервалы получают прибавляя к концу предыдущего интервала длину частичного интервала h :

x hi = x hi-1 +h .

Построение шкалы интервалов на основе вычисления границ интервалов продолжается до тех пор, пока величина x hi удовлетворяет соотношению:

x hi < x max + 0,5·h .

4 . В соответствии со шкалой интервалов производится группирование значений признака - для каждого частичного интервала вычисляется сумма частот n i вариант, попавших в i -й интервал. При этом в интервал включают значения случайной величины, большие или равные нижней границе и меньшие верхней границы интервала.

Полигон и гистограмма

Для наглядности строят различные графики статистического распределения.

По данным дискретного вариационного ряда строят полигон частот или относительных частот.

Полигоном частот x 1 ; n 1 ), (x 2 ; n 2 ), ..., (x k ; n k ). Для построения полигона частот на оси абсцисс откладывают варианты x i , а на оси ординат - соответствующие им частоты n i . Точки (x i ; n i ) соединяют отрезками прямых и получают полигон частот (Рис. 1).

Полигоном относительных частот называют ломанную, отрезки которой соединяют точки (x 1 ; W 1 ), (x 2 ; W 2 ), ..., (x k ; W k ). Для построения полигона относительных частот на оси абсцисс откладывают варианты x i , а на оси ординат - соответствующие им относительные частоты W i . Точки (x i ; W i ) соединяют отрезками прямых и получают полигон относительных частот.

В случае непрерывного признака целесообразно строить гистограмму .

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h , а высоты равны отношению n i / h (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии n i / h .

Предмет математической статистики. Генеральная и выборочная совокупность.

— Математическая статистика – раздел математики, который изучает способы отбора, группировки, систематизации и анализа статистических данных, для получения научно обоснованных выводов.

— Статистические данные числовые значения рассматриваемого признака изучаемых объектов, полученные как результат случайного эксперимента.

Математическая статистика тесно связана с теорией вероятностей, но в отличие от теории вероятностей, математическая модель эксперимента неизвестна. В математической статистике по статистическим данным необходимо установить неизвестное распределение вероятностей или объективно оценить параметры распределения.

Методы математической статистики позволяют строить оптимальные математические модели массовых, повторяющихся явлений. Связующим звеном между теорией вероятностей и математической статистикой являются предельные теоремы теории вероятностей.

В настоящее время статистические методы используются практически во всех отраслях народного хозяйства.

— Генеральная совокупность – статистические данные всех изучаемых объектов (иногда – сами объекты). Часто генеральную совокупность рассматривают как СВ Х.

— Выборка (выборочная совокупность) – статистические данные объектов, выбранных случайно из генеральной совокупности.

— Объём выборки n (объём генеральной совокупности N ) – количество объектов, выбранных для изучения из генеральной совокупности (количество объектов в генеральной совокупности).

Примеры .

а) Статистическими данными могут быть: рост студентов; количество глаголов (или других частей речи) в отрывке текста определённой длины; средний балл аттестата; уровень интеллекта; число ошибок, допущенных диспетчером и т. п.

б) Генеральной совокупностью может быть: рост всех людей, разряды всех рабочих завода, частота употребления определённой части речи во всех произведениях изучаемого автора, средний балл аттестата всех выпускников и т. п.



в)Выборкой может быть: – рост 20 студентов, количество глаголов в выбранных произвольно 50 однородных отрывках текста длиной 500 словоупотреблений, средний балл аттестата 100 выпускников, выбранных случайно из школ города и т.п.

Выборка называется репрезентативной, если она верно отражает свойство генеральной совокупности. Репрезентативность выборки достигается случайностью отбора, когда все объекты генеральной совокупности имеют одинаковую вероятность быть отобранными.

Для того чтобы выборка была репрезентативной применяют различные способы отбора объектов изучения.

Виды отбора : простой, механический, серийный, типический.

Простой . Произвольно отбираются элементы из всей генеральной совокупности.

Механический отбор . Выбирают каждый 10 (25, 30 и т.п.) объект из генеральной совокупности.

Серийный . Проводится исследование в каждой серии (например, из текста выбирают 10 отрывков по 500 словоупотреблений- 10 серий).

Типический . Генеральную совокупность по определённому признаку разделяют на типические группы. Количество серий, извлекаемых из каждой такой группы, определяется удельным весом этой группы в генеральной совокупности.

Статистическое распределение выборки и его графическое изображение.

Пусть изучается СВ Х (генеральная совокупность) относительно некоторого признака. Проводится ряд независимых испытаний. В результате опытов СВ Х принимает некоторые значения. Совокупность полученных значений представляет собой выборку, а сами значения являются статистическими данными.

Первоначально проводят ранжирование выборки - расположение статистических данных выборки по неубыванию. Получаем вариационный ряд.

Вариационный ряд - проранжированная выборка.

Дискретный статистический ряд

Если генеральная совокупность является дискретной СВ, строится дискретный статистический ряд (статистическое распределение).

Пусть значение появилось в выборке раз,

Разa , …, - раз.

I-тая варианта выборки; - частота i-той варианты Частота показывает, сколько раз данная варианта появилась в выборке.

- относительная частота i-той варианты

(показывает какую часть выборки составляет ).

Статистическое распределение – это соответствие между вариантами выборки и их частотами или относительными частотами.

Для ДСВ статистическое распределение можно представить в виде таблицы – статистического ряда частот или статистического ряда относительных частот.

Статистический ряд частот Статистический ряд

относительных частот

........
........
........
........

Для наглядности представления статистического распределения выборки строят «графики» статистического распределения: полигон и гистограмму.

Полигон частот (относительных частот) – графическое изображение дискретного статистического ряда - ломаная линия, последовательно соединяющая точки [ для полигона относительных частот].

Пример. Исследователя интересуют знания абитуриентов по математике. Выбирают 10 абитуриентов и записывают их школьные оценки по этому предмету. Получена следующая выборка: 5;4;4;3;2;5;4;3;4;5.

а) Представить выборку в виде вариационного ряда;

б) построить статистический ряд частот и относительных частот;

в) изобразить полигон относительных частот для полученного ряда.

а) Проведем ранжирование выборки, т.е. расположим члены выборки по неубыванию. Получаем вариационный ряд: 2; 3; 3; 4; 4; 4; 4; 5; 5;5.

б) Построим статистический ряд частот (соответствие между вариантами выборки и их частотами) и статистический ряд относительных частот (соответствие между вариантами выборки и их относительными частотами)

0,1 0,2 0,4 0,3

Статистический ряд частот статистический ряд отн. частот

1+2+4+3=10=n 0,1+0,2+0,4+0,3=1.

Полигон относительных частот.


Статистический ряд распределения – это упорядоченное распределение единиц совокупности на группы по определённому варьирующему признаку.
В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения .

Наличие общего признака является основой для образования статистической совокупности, которая представляет собой результаты описания или измерения общих признаков объектов исследования.

Предметом изучения в статистике являются изменяющиеся (варьирующие) признаки или статистические признаками.

Виды статистических признаков .

Атрибутивными называют ряды распределения , построенные по качественным признакам. Атрибутивный – это признак, имеющий наименование, (например профессия: швея, учитель и т.д.).
Ряд распределения принято оформлять в виде таблиц. В табл. 2.8 приведён атрибутивный ряд распределения.
Таблица 2.8 - Распределение видов юридической помощи, оказанной адвокатами гражданам одного из регионов РФ.

Вариационный ряд – это значения признака (или интервалы значений) и их частоты.
Вариационными рядами называют ряды распределения , построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот.
Вариантами считаются отдельные значения признака, которые он принимает в вариационном ряду.
Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, её объём.
Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100 %. Вариационный ряд позволяет по фактическим данным оценить форму закона распределения.

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды .
Пример дискретного вариационного ряда приведен в табл. 2.9.
Таблица 2.9 - Распределение семей по числу занимаемых комнат в отдельных квартирах в 1989 г. в РФ.

В первой колонке таблицы представлены варианты дискретного вариационного ряда, во второй – помещены частоты вариационного ряда, в третьей – показатели частости.

Вариационный ряд

В генеральной совокупности исследуется некоторый количественный признак. Из нее случайным образом извлекается выборка объема n , то есть число элементов выборки равно n . На первом этапе статистической обработки производят ранжирование выборки, т.е. упорядочивание чисел x 1 , x 2 , …, x n по возрастанию. Каждое наблюдаемое значение x i называется вариантой . Частота m i – это число наблюдений значения x i в выборке. Относительная частота (частость) w i – это отношение частоты m i к объему выборкиn : .
При изучении вариационного ряда также используют понятия накопленной частоты и накопленной частости. Пусть x некоторое число. Тогда количество вариантов, значения которых меньше x , называется накопленной частотой: для x i n называется накопленной частостью w i max .
Признак называется дискретно варьируемым, если его отдельные значения (варианты) отличаются друг от друга на некоторую конечную величину (обычно целое число). Вариационный ряд такого признака называется дискретным вариационным рядом.

Таблица 1. Общий вид дискретного вариационного ряда частот

Значения признака x i x 1 x 2 x n
Частоты m i m 1 m 2 m n

Признак называется непрерывно варьирующим, если его значения отличаются друг от друга на сколь угодно малую величину, т.е. признак может принимать любые значения в некотором интервале. Непрерывный вариационный ряд для такого признака называется интервальным.

Таблица 2. Общий вид интервального вариационного ряда частот

Таблица 3. Графические изображения вариационного ряда

Ряд Полигон или гистограмма Эмпирическая функция распределения
Дискретный
Интервальный
Просматривая результаты проведенных наблюдений, определяют, сколько значений вариантов попало в каждый конкретный интервал. Предполагается, что каждому интервалу принадлежит один из его концов: либо во всех случаях левые (чаще), либо во всех случаях правые, а частоты или частости показывают число вариантов, заключенных в указанных границах. Разности a i – a i +1 называются частичными интервалами. Для упрощения последующих расчетов интервальный вариационный ряд можно заменить условно дискретным. В этом случае серединное значение i -го интервала принимают за вариант x i , а соответствующую интервальную частоту m i – за частоту этого интервала.
Для графического изображения вариационных рядов наиболее часто используются полигон, гистограмма, кумулятивная кривая и эмпирическая функция распределения.

В табл. 2.3 (Группировка населения России по размеру среднедушевого дохода в апреле 1994г.) представлен интервальный вариационный ряд .
Удобно ряды распределения анализировать при помощи графического изображения, позволяющего судить и о форме распределения. Наглядное представление о характере изменения частот вариационного ряда дают полигон и гистограмма .
Полигон используется при изображении дискретных вариационных рядов .
Изобразим, например графически распределение жилого фонда по типу квартир, (табл. 2.10).
Таблица 2.10 - Распределение жилого фонда городского района по типу квартир (цифры условные).


Рис. Полигон распределения жилого фонда


На оси ординат могут наноситься не только значения частот, но и частостей вариационного ряда.
Гистограмма принимается для изображения интервального вариационного ряда . При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам. Гистограмма – график, на котором ряд изображен в виде смежных друг с другом столбиков.
Изобразим графически интервальный ряд распределения, приведённый в табл. 2.11.
Таблица 2.11 - Распределение семей по размеру жилой площади, приходящейся на одного человека (цифры условные).
N п/п Группы семей по размеру жилой площади, приходящейся на одного человека Число семей с данным размером жилой площади Накопленное число семей
1 3 – 5 10 10
2 5 – 7 20 30
3 7 – 9 40 70
4 9 – 11 30 100
5 11 – 13 15 115
ВСЕГО 115 ----


Рис. 2.2. Гистограмма распределения семей по размеру жилой площади, приходящейся на одного человека


Используя данные накопленного ряда (табл. 2.11), построим кумуляту распределения.


Рис. 2.3. Кумулята распределения семей по размеру жилой площади, приходящейся на одного человека


Изображение вариационного ряда в виде кумуляты особенно эффективно для вариационных рядов, частоты которых выражены в долях или процентах к сумме частот ряда.
Если при графическом изображении вариационного ряда в виде кумуляты оси поменять, то мы получим огиву . На рис. 2.4 приведена огива, построенная на основе данных табл. 2.11.
Гистограмма может быть преобразована в полигон распределения, если найти середины сторон прямоугольников и затем эти точки соединить прямыми линиями. Полученный полигон распределения изображён на рис. 2.2 пунктирной линией.
При построении гистограммы распределения вариационного ряда с неравными интервалами по оси ординат наносят не частоты, а плотность распределения признака в соответствующих интервалах.
Плотность распределения – это частота, рассчитанная на единицу ширины интервала, т.е. сколько единиц в каждой группе приходится на единицу величины интервала. Пример расчета плотности распределения представлен в табл. 2.12.
Таблица 2.12 - Распределение предприятий по числу занятых (цифры условные)
N п/п Группы предприятий по числу занятых, чел. Число предприятий Величина интервала, чел. Плотность распределения
А 1 2 3=1/2
1 До 20 15 20 0,75
2 20 – 80 27 60 0,25
3 80 – 150 35 70 0,5
4 150 – 300 60 150 0,4
5 300 – 500 10 200 0,05
ВСЕГО 147 ---- ----

Для графического изображения вариационных рядов может также использоваться кумулятивная кривая . При помощи кумуляты (кривой сумм) изображается ряд накопленных частот. Накопленные частоты определяются путём последовательно суммирования частот по группам и показывают, сколько единиц совокупности имеют значения признака не больше, чем рассматриваемое значение.


Рис. 2.4. Огива распределения семей по размеру жилой площади, приходящейся на одного человека

При построении кумуляты интервального вариационного ряда по оси абсцисс откладываются варианты ряда, а по оси ординат накопленные частоты.